-
--热烈祝贺我会联办的科普活动被中国科协评为--优秀科普活动
12月21日,中国科学技术协会办公厅印发《关于对2020年全国科普日有关组织单位和活动予以表扬的通知》(科协办函普字【2020】158号), 、南京工程学会和江苏省学会服务中心联办的“2020年全国科普日暨第一届‘天印筑梦·科普智行’”活动,被评为优秀科普活动。
应用领域:小分子物质的分离和鉴定,还可以用来分析化学性质相同分子体积不同的高分子同系物。
注意事项:相对分子质量相近而化学结构不同的物质,不能通过凝胶渗透色谱法达到完全分离纯化,相对分子质量相差需在10%以上才能得到分离。
12、表征方式:离子色谱仪
效果:对常见阴离子如 F - 、Cl - 、Br - 、NO 2- 、NO 3- 、SO 4 2- 、PO 4 3- 和阳离子如 Li + 、Na + 、NH 4 + 、K + 、Mg 2+ 、Ca 2+ 等进行定性定量分析,与ICP等手段组合应用是分析利器。
原理:分离的原理是基于离子交换树脂上可离解的离子与流动相中具有相同电荷的溶质离子之间进行的可逆交换和分析物溶质对交换剂亲和力的差别而被分离。适用于亲水性阴、阳离子的分离。例如用NaOH作淋洗液,分离样品中的 F - 、Cl - 和SO 4 2- 几个阴离子,样品溶液进样之后,首先与分析柱发生吸附,保留在柱子上。随后用NaOH作淋洗液分析样品中的阴离子,保留在柱上的阴离子即被淋洗液中的OH-基置换并从柱上被洗脱。对树脂亲和力弱的分析物离子先于对树脂亲和力强的分析物离子依次被洗脱,这就是离子色谱分离过程,随后使用检测器检测即可。
应用领域:离子色谱主要用于环境样品的分析,包括地面水、饮用水、雨水、生活污水和工业废水、酸沉降物和大气颗粒物等样品中的阴、阳离子,与微电子工业有关的水和试剂中痕量杂质的分析。另外在食品、卫生、石油化工、水及地质等领域也有广泛的应用。
13、表征方式:激光粒度仪
效果:分析颗粒样品粒径、粒径分布等。
原理:激光粒度仪是通过颗粒的衍射或散射光的空间分布(散射谱)来分析颗粒大小的仪器,采用Furanhofer衍射及Mie散射理论,测试过程不受温度变化、介质黏度,试样密度及表面状态等诸多因素的影响,只要将待测样品均匀地展现于激光束中,即可获得准确的测试结果。
应用领域:建材、化工、冶金、能源、食品、电子、地质、军工、航空航天、机械、高校、实验室,研究机构等
14、表征方式:有机元素分析仪
效果:定量分析C、H、O、N、S等几种有机样品中常见元素,是分析常用手段。
原理:CHNS测定模式下,样品在可熔锡囊或铝囊中称量后,进入燃烧管在纯氧氛围下静态燃烧。燃烧的最后阶段再通入定量的动态氧气以保证所有的有机物和无机物都完全燃烧。如使用锡制封囊,燃烧最开始时发生的放热反应可将燃烧温度提高到1800°C,进一步确保燃烧反应完全。
样品燃烧后的产物通过特定的试剂后形成CO2、H2O、N2和氮氧化物,同时试剂将一些干扰物质,如卤族元素、S和P等去除。随后气体进入还原管,去除过量的氧并将氮氧化物还原成N2,而后通过吹扫捕集吸附柱或者气相色谱柱实现气体分离,然后进入热导检测器。
测定O的方法则主要是裂解法,样品在纯氦氛围下热解后与铂碳反应生成CO,然后通过热导池的检测,最终计算出氧的含量。
适合分析材料:在研究有机材料及有机化合物的元素组成等方面具有重要作用
应用领域:广泛应用于土壤、化工、环境、食品行业
16、表征方式:其他光谱仪如红外、紫外、拉曼、荧光等
其他光谱仪如红外、紫外、拉曼、荧光等分别适用于不同类型样品,可做定性定量表征手段。
傅里叶一红外光谱仪
全名为Fourier Transform Infrared Spectrometer,FTIR Spectrometer,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。
光源发出的光被分束器(类似半透半反镜)分为两束,一束经透射到达动镜,另一束经反射到达定镜。两束光分别经定镜和动镜反射再回到分束器,动镜以一恒定速度作直线运动,因而经分束器分束后的两束光形成光程差,产生干涉。干涉光在分束器会合后通过样品池,通过样品后含有样品信息的干涉光到达检测器,然后通过傅里叶变换对信号进行处理,最终得到透过率或吸光度随波数或波长的红外吸收光谱图。
傅里叶红外光谱仪不同于色散型红外分光的原理,可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。
傅里叶一红外光谱仪可检验金属离子与非金属离子成键、金属离子的配位等化学环境情况及变化。
国产主流厂家:
天津港东生产的FTIR-650 傅里叶变换红外光谱仪、FTIR-850 傅里叶变换红外光谱仪;
北京瑞利生产的WQF-510 傅里叶变换红外光谱仪、WQF-520 傅里叶变换红外光谱仪。
进口品牌厂家:
日本SHIMADZU 生产的IRAffinity-1,IRAffinity-21 傅里叶变换红外光谱仪;
美国Thermo Fisher 生产的Nicolet 6700、IS10、IS5 傅里叶变换红外光谱仪;
德国Bruker Optics 生产的Tensor 27、Tensor 37 傅立叶变换红外光谱仪。
拉曼光谱
拉曼光谱是分子的非弹性光散射现象所产生,非弹性光散射现象是指光子与物质分析发生相互碰撞后,在光子运动方向发生改变的同时还发生能量的交换(非弹性碰撞)。拉曼光谱产生的条件是某一简谐振动对应于分子的感生极化率变化不为零时,拉曼频移与物质分子的转动和振动能级有关,不同物质有不同的振动和转动能级,同时产生不同拉曼频移‘拉曼光谱具有灵敏度高、不破坏样品、方便快速等优点。
拉曼光谱是一种研究物质结构的重要方法,特别是对于研究低维纳米材料,它已经成为首选方法之一。
实际做出的谱图:丙酮的拉曼光谱图
拉曼信号的选择:入射激光的功率,样品池厚度和光学系统的参数也对拉曼信号强度有很大的影响,故多选用能产生较强拉曼信号并且其拉曼峰不与待测拉曼峰重叠的基质或外加物质的分子作内标加以校正。其内标的选择原则和定量分析方法与其他光谱分析方法基本相同。
斯托克斯线能量减少,波长变长
反斯托克斯线能量增加,波长变短
利用拉曼光谱可以对材料进行分子结构分析、理化特性分析和定性鉴定等,可揭示材料中的空位、间隙原子、位错、晶界和相界等方面信息。
17、表征方式:材料(固液粉)元素定性定量分析
X射线荧光分析仪
效果:确定物质中微量元素的种类和含量的一种方法。
原理:不同元素发出的特征X射线能量和波长各不相同,因此通过对X射线的能量或者波长的测量即可知道它是何种元素发出的,进行元素的定性分析。同时样品受激发后发射某一元素的特征X射线强度跟这元素在样品中的含量有关,因此测出它的强度就能进行元素的定量分析。
应用领域:广泛用于冶金、地质、矿物、石油、化工、生物、医疗、刑侦、考古等诸多部门和领域。
18、微观原子排布结构
仪器:3DAP/APT(三维原子探针)
效果:具有原子级空间分辨率的测量和分析设备,能够同时给出材料内部结构的三维形貌和化学成分。
原理:原子探针是基于场发射原理制成的。在超高真空及液氮冷却试样条件下,在针尖试样上施加足够的正高压,试样表面原子开始形成离子并离开针尖表面。这称为场发射。有两种物理模型(镜象势垒和电荷交换模型)描述场蒸发过程,认为针尖试样表面在电场(F)作用下使原子获得活化能(Q),克服金属表面势垒而离开表面。这时离子便在无场管道中飞向探测器。探测器输出二维原子位置信号,另外通过飞行时间质谱仪测量离子的飞行时间以鉴别其单个原子化学成分。通过软件重构还原材料的三维原子分布信息。
适合分析材料:专门应对材料研发中纳米尺度的分析测试难题,特别适合于研究时效早期的小结构(沉淀、团簇、GP区等)以及各种内界面(晶界、相界、多层膜结构中的层间界面等),例如,元素在界面附近的偏聚行为,又比如沉淀相或团簇结构的尺寸、成份及分布等等。
应用领域:从纯学术研究到汽车、航空发动机、核设施、半导体芯片、LED、光伏材料等等应用科学甚至直接的生产过程监控
19、表征大孔材料孔径分布
效果:因氮气吸附测试只能局限于测中微孔分布,大孔材料一般利用压汞测试来测量。
原理:汞对大多数固体材料具有非润湿性,需外加压力才能进入固体孔中,对于圆柱型孔模型,汞能进入的孔的大小与压力符合Washburn方程,控制不同的压力,即可测出压入孔中汞的体积,由此得到对应于不同压力的孔径大小的累积分布曲线或微分曲线。
Washburn 方程:h 2 = crσ cosθ·t (2η) – 1 ,式中c 为毛细管形状系数;r 为平均毛细管半径;指定体系的cr 为定值,称为形式半径;σ为液体的表面张力;η为液体粘度
适合分析材料:大孔材料
应用领域:压汞仪用来测定粉末和固体重要的物理特性,如孔径分布、总孔体积、总孔表面积、中值孔径、样品的密度(真密度和堆密度)、流体导电性和机械性能。
20、X射线衍射物相分析
粉末X射线衍射法,除了用于对固体样品进行物相分析外,还可用来测定晶体结构的晶胞参数、点阵型式及简单结构的原子坐标。
X射线衍射分析用于物相分析的原理是:由各衍射峰的角度位置所确定的晶面间距d以及它们的相对强度Ilh是物质的固有特征。而每种物质都有特定的晶胞尺寸和晶体结构,这些又都与衍射强度和衍射角有着对应关系,因此,可以根据衍射数据来鉴别晶体结构。
此外,依据XRD衍射图,利用Schererr公式:
K为Scherrer常数,若B为衍射峰的半高宽,则K=0.89;若B为衍射峰的积分高宽,则K=1:;
D为晶粒垂直于晶面方向的平均厚度(nm);
B为实测样品衍射峰半高宽度(必须进行双线校正和仪器因子校正),在计算的过程中,需转化为弧度(rad);
θ为衍射角,也换成弧度制(rad);
由X射线衍射法测定的是粒子的晶粒度。
21、扫描隧道显微镜(STM)
基本原理:扫描穿隧显微术是利用“穿隧效应”的原理,当探针与样品间距离很小时,在两者之间加上微小电压,则电子就会在样品与探针间形成穿隧电流。
扫描隧道显微镜有原子量级的高分辨率,其平行和垂直于表面方向的分辨率分别为0.1 nm和0.01nm,即能够分辨出单个原子,因此可直接观察晶体表面的近原子像;其次是能得到表面的三维图像,可用于测量具有周期性或不具备周期性的表面结构。通过探针可以操纵和移动单个分子或原子,按照人们的意愿排布分子和原子,以及实现对表面进行纳米尺度的微加工,同时,在测量样品表面形貌时,可以得到表面的扫描隧道谱,用以研究表面电子结构。
扫描隧道显微镜的工作原理简单得出乎意料。就如同一根唱针扫过一张唱片,一根探针慢慢地通过要被分析的材料(针尖极为尖锐,仅仅由一个原子组成)。一个小小的电荷被放置在探针上,一股电流从探针流出,通过整个材料,到底层表面。当探针通过单个的原子,流过探针的电流量便有所不同,这些变化被记录下来。电流在流过一个原子的时候有涨有落,如此便极其细致地探出它的轮廓。在许多的流通后,通过绘出电流量的波动,人们可以得到组成一个网格结构的单个原子的美丽图片。
22、透射电子显微镜(TEM)
穿透式电子显微镜分析时,通常是利用电子成像的绕射对比,作成明视野或暗视野影像,并配合绕射图样来进行观察。
明视野:即是用物镜孔径遮挡绕射电子束,仅让直射电子束通过成像。
暗视野:则是用物镜孔径遮挡直射电子束,仅让绕射电子束通过成像。
透射电镜基本结构